Towards molecular dynamics simulation of large proteins with a hydration shell at constant pressure.
نویسندگان
چکیده
Molecular dynamics simulation of a large protein in explicit water with periodic boundary conditions is extremely demanding in terms of computation time. Consequently, we have sought approximations of the solvent environment that model its important features. Here, we describe our SAPHYR (Shell Approximation for Protein HYdRation) model in which the protein is surrounded by a shell of water molecules maintained at constant pressure. In addition to the usual pairwise interatomic interactions, these water molecules are subjected to forces approximating van der Waals and dipole-dipole interactions with the implicit surrounding bulk solvent. The SAPHYR model is tested for a system of one argon atom in water and for the protein ubiquitin, and then applied to cytochrome P450cam, a protein with over 400 residues. The results demonstrate that structural and dynamic properties of the simulated systems are improved by use of the SAPHYR model, and that this model provides a significant computational saving over simulations with periodic boundary conditions.
منابع مشابه
Molecular Dynamics Simulation of Potassium Chloride Melting (II. Constant Volume and Constant Pressure Simulation of Filled System)
We have used a simple ionic potential to simulate the melting of KCI pseudo-infinite crystal. Two MD simulations, one with constant Volume and the other with constant pressure condition are performed. These results are compared with the previous micro-sample simulation results. In the constant volume simulation the melting temperature increase substantially with increasing pressure. A method fo...
متن کاملMolecular dynamics studies on the denaturation of polyalanine in the presence of guanidinium chloride at low concentration
Molecular dynamic simulation is a powerful method that monitors all variations in the atomic level in explicit solvent. By this method we can calculate many chemical and biochemical properties of large scale biological systems. In this work all-atom molecular dynamics simulation of polyalanine (PA) was investigated in the presence of 0.224, 0.448, 0.673, 0.897 and 1.122 M of guanidinium chlorid...
متن کاملSize Dependence of the Elastic Properties of Pd Nanowire: Molecular Dynamics Simulation
The mechanical properties including elastic stiffness constants as well as bulk modulus of Palladium (Pd) nanowire were calculated in the constant temperature and pressure (NPT), ensemble by molecular dynamics (MD) simulation technique. The quantum Sutton-Chen (Q-SC) many-body potential was used to calculate the cohesive energy as well as forces experience by every atoms. The temperature and pr...
متن کاملSolvation in high-temperature electrolyte solutions. I. Hydration shell behavior from molecular simulation
The behavior of the first hydration shell of species in solution and its relevant thermophysical properties are studied by molecular dynamics of infinitely dilute NaCl aqueous solutions at high temperature. The ion-induced effects on the water local properties are assessed in terms of the corresponding radial profiles for the local density, the local pressure, the local electric field, the loca...
متن کاملMolecular dynamics simulation of solvated protein at high pressure.
We have completed a molecular dynamics simulation of protein (bovine pancreatic trypsin inhibitor, BPTI) in solution at high pressure (10 kbar). The structural and energetic effects of the application of high pressure to solvated protein are analyzed by comparing the results of the high-pressure simulation with a corresponding simulation at low pressure. The volume of the simulation cell contai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical chemistry
دوره 78 1-2 شماره
صفحات -
تاریخ انتشار 1999